
Technical Analysis: Ray Transport-Based 
Mesh Segmentation Algorithm
Ashton Jenson

Executive Summary
This report presents a detailed analysis of my ray transport-based mesh segmentation 
algorithm. The system leverages GPU ray tracing in conjunction with advanced graph theory to 
automatically partition 3D meshes into meaningful components. Through optimization 
techniques and careful implementation choices, the algorithm achieves efficient processing 
while producing high-quality segmentations that align with both geometric and functional 
characteristics of the input mesh.

The foundation of my system rests on simulating light transport within 3D meshes to identify 
natural segmentation boundaries. This approach differs fundamentally from traditional geometric 
methods by considering how light would theoretically propagate through an object, revealing 
functional and structural relationships between different mesh regions.

Algorithm Overview and Workflow
My mesh segmentation algorithm follows a multi-phase approach that combines physical 
simulation principles with advanced graph theory. Each phase builds upon the previous one to 
create a robust and efficient segmentation process.

Phase 1: System Initialization

The process begins with a comprehensive initialization phase where the system prepares the 
3D mesh for processing. During this critical setup stage, the algorithm computes and caches 
essential geometric properties of the mesh, including face normals, centroids, and edge vectors. 
This pre-computation strategy significantly enhances performance during subsequent 
processing stages by eliminating redundant calculations.

Phase 2: Ray Generation and Transport Simulation

Following initialization, the algorithm implements a ray generation system. For each face within 
the mesh, the system generates a carefully designed set of rays to analyze potential ray 
transport paths. I originally had it pick randomly from within the bounding box, with a monte 



carlo method. However, I found that even with a large amount of sampled points, there would be 
triangles that were missed in the clustering. So we have to pick an approach that inherently 
considers every triangle in the mesh.​

The primary ray originates from the face's centroid and travels in the direction opposite to the 
face's normal vector. To ensure comprehensive coverage, the system generates additional rays 
within a 30-degree cone surrounding this primary direction. This multi-ray approach provides 
robust coverage of potential ray transport paths while maintaining computational efficiency.

The intersection detection employs an optimized version of the Möller-Trumbore algorithm to 
track ray intersections throughout the mesh. The system processes these intersections through 
multiple bounces, typically ten iterations, creating a detailed record of theoretical ray transport 
patterns. This phase leverages GPU acceleration through batch processing, allowing for 
efficient parallel computation of thousands of ray-triangle intersections simultaneously.

The ray transport system implements a configurable bounce analysis where the number of 
bounces can be adjusted based on specific requirements. While my testing established ten 
bounces as an effective default value, this parameter can be modified to accommodate different 
mesh characteristics and analysis requirements.

The number of bounces serves as a key configuration parameter that influences both the quality 
of segmentation and computational performance. Users can specify any number of bounces 
through the initialization parameters, allowing for fine-tuned control over the analysis depth.

Ray paths terminate under several conditions:

1.​ Reaching the maximum bounce count
2.​ Exiting the mesh through a back face (Moller Trumbore Failure)
3.​ When the ray's energy falls below a threshold due to accumulated numerical errors 

(Floating point Error)

Phase 3: Graph Structure Development

The algorithm transforms the accumulated intersection data into a graph structure that captures 
the essential patterns of ray transport within the mesh. Each mesh face becomes a vertex within 
this graph, while edges represent ray transitions between faces. The system assigns edge 
weights based on multiple factors, including transition frequency and characteristics, creating a 
rich representation of the mesh's internal structure and connectivity patterns.

Phase 4: Community Detection Analysis

Using the constructed graph, the system implements an enhanced version of the Louvain 
community detection algorithm to identify strongly connected groups of faces. This phase 
incorporates adaptive parameter adjustment based on mesh characteristics, ensuring 



appropriate segmentation across varying mesh scales and complexities. The result is a 
preliminary segmentation that reflects the underlying ray transport patterns within the mesh.

Phase 5: Physical Connectivity Verification

The algorithm then ensures physical coherence through a robust connectivity enforcement 
system. Utilizing an optimized disjoint set data structure, the system verifies physical 
connectivity within each identified segment. This phase identifies and handles any disconnected 
components, ensuring that all final segments maintain physical coherence while preserving 
important boundary features.

Phase 6: Small Segment Processing

Following initial segmentation, the system identifies and processes segments that fall below a 
specified size threshold, typically set at 3% of the total mesh face count. The algorithm 
implements a merging process that considers multiple factors when combining small segments 
with their neighbors, including ray transport connectivity strength, physical adjacency patterns, 
and geometric compatibility measures.

Phase 7: Final Optimization

The final phase implements comprehensive refinement procedures to ensure optimal 
segmentation quality. This includes boundary smoothing operations, final connectivity 
verification, and coherence checks. The system performs these refinements while maintaining 
the fundamental principles established through the ray transport analysis.

Connectivity Management

Disjoint Set System

The disjoint set system implements both path compression and union by rank optimizations. 
This data structure efficiently maintains and updates connectivity information throughout the 
segmentation process. The implementation ensures nearly constant-time operations for both 
finding set representatives and merging sets.

The system maintains two key pieces of information for each element: a parent pointer and a 
rank value. The parent pointer allows for efficient set membership queries, while the rank value 
helps maintain balanced trees during merge operations.

Physical Connectivity Enforcement



My implementation ensures physical connectivity of segments through a refinement process. 
The system maintains a face adjacency graph that represents the physical connectivity of the 
mesh. This information is used to verify and enforce segment connectivity during the community 
detection and refinement phases.

Small Cluster Detection and Merging

My system implements an approach to handling small clusters. The process begins by 
identifying clusters below a specified size threshold, typically set to 3% of the total mesh face 
count. These small clusters are processed in order of increasing size to ensure stable merging 
behavior.

The merging process uses a weighted scoring system that considers multiple factors:

●​ The strength of ray transport connections between clusters
●​ Physical adjacency and boundary length
●​ Geometric compatibility based on normal vectors
●​ Relative cluster sizes to prevent creation of new small clusters

Optimization

GPU-Accelerated Ray Tracing Implementation

My implementation leverages PyTorch's GPU acceleration capabilities to achieve efficient 
ray-triangle intersection testing. The ray tracing system processes intersections in batches, with 
each batch containing thousands of rays. Through extensive testing, we determined that a batch 
size of 10,000 rays provides optimal performance on modern GPUs while maintaining 
reasonable memory usage. The batch processing approach allows us to fully utilize the GPU's 
parallel processing capabilities while avoiding memory constraints.

As stated before, the ray-triangle intersection testing employs the Möller-Trumbore algorithm 
with several crucial optimizations. We implemented vectorized operations that process multiple 
rays against multiple triangles simultaneously. The algorithm pre-computes and caches triangle 
edges and normals to minimize redundant calculations. Additionally, we implemented early 
termination checks that skip unnecessary computations when rays clearly miss triangles, 
significantly reducing processing time for complex meshes.

Memory Management and Data Structures

Memory efficiency proved crucial for handling larger meshes. My implementation uses custom 
sparse data structures to represent the ray transport graph, significantly reducing memory 
overhead compared to dense matrix representations. The system maintains a dynamic memory 
allocation strategy that releases intermediate computational results as soon as they are no 
longer needed, ensuring efficient memory utilization throughout the processing pipeline.



Clustering Implementation

The clustering phase employs an enhanced version of the Louvain community detection 
algorithm. My implementation includes several key optimizations. First, we use a multi-level 
approach that initially clusters at a coarse level and then refines the results. This hierarchical 
strategy significantly reduces the computational complexity while maintaining clustering quality.

The algorithm dynamically adjusts the resolution parameter based on mesh characteristics. 
Through empirical testing, we found that setting the initial resolution parameter to 1.0 and then 
adjusting it based on the mesh's face count and density produces optimal results. The resolution 
parameter is modified using a logarithmic scale relative to the mesh size, ensuring consistent 
clustering results across different mesh scales.

Disjoint Set Implementation

The Union-Find (Disjoint Set) data structure plays a crucial role in maintaining physical 
connectivity constraints. My implementation includes both path compression and union by rank 
optimizations, resulting in nearly constant-time operations. The data structure maintains an 
array of parent pointers and a rank array to ensure balanced trees.

The Union-Find implementation is particularly efficient due to its use of path compression during 
the find operation. When searching for a set's representative element, the algorithm updates all 
nodes along the path to point directly to the root, significantly reducing future query times. This 
optimization results in an amortized time complexity of O(α(n)) per operation, where α(n) is the 
inverse Ackermann function.

Technical Limitations

Mesh Requirements

The current implementation requires manifold meshes without holes or self-intersections. This 
constraint arises from the need for consistent normal vectors and well-defined internal volumes 
for ray transport simulation. The STL format provides the most reliable results in my testing, as it 
ensures consistent triangle orientation and normal direction.

Scale Constraints

While the algorithm's theoretical complexity scales linearly with face count, practical limitations 
emerge with meshes exceeding one million faces. These constraints primarily stem from GPU 
memory limitations, though my batch processing approach helps mitigate these issues. The 
current implementation successfully handles most practical mesh sizes while maintaining 
reasonable processing times.



Future Improvements

Hardware Acceleration

The most promising avenue for performance improvement lies in leveraging modern GPU ray 
tracing hardware. Current GPU architectures, such as NVIDIA's RTX series, provide dedicated 
ray tracing cores that could significantly accelerate our intersection testing phase. Implementing 
the algorithm using compute shaders or hardware-accelerated ray tracing APIs like OptiX or 
DirectX Raytracing could potentially improve performance by an order of magnitude.

Algorithm Enhancements

Several algorithmic improvements could enhance the system's capabilities:

●​ Adaptive ray sampling based on local mesh complexity
●​ Multi-resolution analysis for handling large meshes
●​ Improved handling of non-manifold geometry
●​ Integration of machine learning techniques for parameter optimization

Scalability Improvements

To handle larger meshes more effectively, future versions could implement:

●​ Out-of-core processing for massive meshes
●​ Progressive refinement for interactive applications
●​ Distributed processing capabilities
●​ Hierarchical mesh representation

Conclusion
While our current implementation demonstrates the effectiveness of ray transport-based mesh 
segmentation, significant opportunities exist for improvement through modern graphics 
hardware and algorithmic refinements. The limitations we've identified primarily stem from 
implementation constraints rather than fundamental algorithmic issues, suggesting that future 
iterations could substantially expand the system's capabilities while maintaining its core 
advantages in identifying meaningful mesh segments.


	Technical Analysis: Ray Transport-Based Mesh Segmentation Algorithm
	Executive Summary
	Algorithm Overview and Workflow
	Phase 1: System Initialization
	Phase 2: Ray Generation and Transport Simulation
	Phase 3: Graph Structure Development
	Phase 4: Community Detection Analysis
	Phase 5: Physical Connectivity Verification
	Phase 6: Small Segment Processing
	Phase 7: Final Optimization

	Connectivity Management
	Disjoint Set System
	Physical Connectivity Enforcement
	Small Cluster Detection and Merging


	Optimization
	GPU-Accelerated Ray Tracing Implementation
	Memory Management and Data Structures
	Clustering Implementation
	Disjoint Set Implementation
	Technical Limitations
	Mesh Requirements
	Scale Constraints

	Future Improvements
	Hardware Acceleration
	Algorithm Enhancements
	Scalability Improvements

	Conclusion


